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Abstract

A simple one-step synthesis for niobium(V) and tantalum(V) fluoride fluorosulfates
is reported. The procedure involves the oxidation of the respective metal by
bis(fluorosulfuryl)peroxide, S,0qF,, in the presence of the corresponding metal penta-
fluoride at room temperature and leads to colorless, viscous liquids. Of the resulting
products, those of the general composition MF, (SO;F);_, (M=Nb, Ta; n>3) can be
distilled in vacuo without decomposition. As an example, the synthesis of TaFs(SO3F),
is described in detail.

Introduction

In spite of their extremely low oxidizing ability, niobium(V) and tan-
talum(V) pentafluorides, NbF; and TaF;, have found surprisingly little use
in conjugate superacid systems because of their low Lewis acidity (NbFs)
and their limited solubilities in anhydrous HF and HSOF {1]. In this
communication, we wish to report a generally applicable, one-step synthetic
route to niobium(V) and tantalum(V) fluoride fluorosulfate derivatives of the
general formula MF, (SO3F);_,, (M =Nb, Ta; 0 <n <5). These compounds are
miscible with HSO3F in all proportions.

Experimental

Niobium and tantalum metal powder (60 mesh, 99.9% purity, Alfa
Inorganics) and NbF; and TaFys (99% purity, Ozark—Mahoning, now known
as Ato Chem, North America) were obtained from commercial sources. They
were used without further purification. Bis(fluorosulfuryl) peroxide, S,0¢F,,
was prepared by the catalytic fluorination of SO; as reported previously [2,
3]. Our drybox as well as the instrumentation and techniques to obtain IR,
Raman, '°F NMR spectra and conductivity data have been described elsewhere
[4]. To illustrate the general synthetic procedure used, the preparation of
TaF5(S05F), is described in detail below.

In a typical preparation, 0.8277 g (4.575 mmol) tantalum powder and
1.8894 g (6.856 mmol) TaF; were added to a two-part glass reactor inside
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a drybox. 8.069 g (40.73 mmol) S,0qF, was added by vacuum-transfer. As
the mixture warmed up to room temperature, the reaction proceeded vigorously
and exothermically. The reactor needed to be cooled in an ice—water bath
at this stage to avoid pressure build-up and the possible decomposition of
the product. Following this initial phase, the reaction continued smoothly
at room temperature. The mixture was stirred for ¢. 2 d until all the metal
powder was consumed. The resulting turbid mixture was filtered in vacuo
to remove a small amount of a white precipitate, using an apparatus as
described by Shriver [5]. The filtrate was then pumped at room temperature
in vacuo to remove excess S,0F,, monitored by the 800 cm™! band (vo0)
in the Raman spectrum [6]. After the removal of S,04F,, a pale-yellow viscous
liquid was obtained as a crude product. A colorless viscous liquid was isolated
in about 90% yield by further distillation in vacuo. Elemental analysis data
for TaF3(SOgF), are listed in Table 1, together with the data for other products
obtained in a similar manner.

Infrared bands (cm™!) and estimated intensities for TaF;(SO3F),: 1440
w, sh; 1410 vs, b; 1325 w, sh; 1235 s; 1170 m; 1100 m; 1040 m; 980 s;
880 m, sh; 840 s; 730 m, sh; 680 s; 630 w; 565 s; 440 m.

Raman shifts (cm™!), estimated intensities and polarization data for
TaF3(S03F),: 1448 w; 1415 m, (p); 1235 s, (p); 1190 vw; 1115 s, (p); 1090
sh; 980 w, b; 886 s, (p); 840 m s, (p); 740 vs, (p); 710 w, sh; 685 w, sh;
640 s, (p); 600 vw; 560 m, (dp); 430 wm; 280 m, sh, (p); 240 s, (dp); 180
w; 130 vw.

"“F NMR chemical shifts of neat TaF,(SO;F), (ppm, relative to CFCly)
0. 39.68 (singlet, sharp); 148.7, 183.0, 191.8 (singlet, broad).

TABLE 1
Elemental analysis data for MF, (SO;F);_, (M=Nb, Ta)

Compound M (%) S (%) F (%)
Nb,Fg(SO;F) found 40.55 7.03 41.68
7.54% 7.492

calculated 40.81 7.04 41.72

NbF,(SO;F) found 34.40 12.11 35.27
11.93% 11.822

calculated 34.71 11.98 35.49

NbF3(S0;F), found 27.00 18.15 27.58

26.90 18.33 27.48

calculated 26.72 18.44 27.32

TaF,(S04F) found 50.5656 9.15 26.69

calculated 50.87 9.01 26.71

TaF,(SO,F), found 41.35 14.46 22.06

calculated 41.52 14.71 21.80

*Data from Mr P. Borda of the Chemistry Department, University of British Columbia. All
others from Analytische Laboratorien, Gummersbach, Germany.
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Conductivity (X107% Q7' em™ ') of neat liquid TaF;(SO3F),: 1.07
(20 °C); 1.28 (25 °C); 1.53 (30 °C); 1.78 (35 °C); 2.05 (40 °C).

Results and discussion

Previously reported routes to ternary fluoride fluorosulfates involve:

(i) The decomposition of binary fluorosulfates via SO; elimination, which
was accidental rather than intentional, e.g. the isolation of GeF5(SOsF),
during the intended preparation of Ge(SOzF), [7].

(i) The addition of S,04F, (or FSO3F) to binary fluorides with the metal
in a lower oxidation state, e.g. the syntheses of Sb,Fy(SO;F), SbF,(SO31),
SbF,(SO;F), [8] and AsF3(SO;F), [9]. This approach is limited in scope
and requires the existence of stable, well-defined and oxidizable precursors
such as SbF; or AsF;, which is not the case for niobium and tantalum
[10].

(iii) The partial insertion of SO; into metal—fluorine bonds. This method has
been used with NbF; and TaF; as reactants and has led to products
with the compositions NbFy - 2.1505 and TaF; - 2.6S0g, respectively, which
were claimed to be complex mixtures with inserted SO; and free SO,
in equilibrium [11].

The method proposed here involves the oxidation of niobium or tantalum
by S,0F,, either alone or in the presence of the corresponding metal penta-
fluoride according to the general equation:

room temp.

nMF; + (b —n)M + excess S,04F, i 5MF,, (SO3F)5 -, ()

(M=Nb, Ta; 0<n<b)

The reactions were carried out at room temperature. An excess of S;0.F,
functioned both as a fluorosulfonating reagent and as a reaction medium
since both NbF; and TaF; were found to be soluble in S,0qF,;. Complete
removal of excess S,04F, was found to be difficult for materials of the
composition MF,, (S80;F);_,, (M=Nb, Ta; n<3), as this led to very viscous
and thermally unstable systems. The pale-yellow color of the crude product
is attributed to grease contamination since two-part reactors were used.

Interestingly, both niobium and tantalum metals are oxidized by S,0¢F;
alone at room temperature over a period of 3 d, to yield very viscous, slightly
yellow oils as crude products. The oxidations proceeded in a similar manner
as reported previously, where S,0sF, was dissolved in HSO3F [4], and took
a similar length of time, but the complete removal of excess S,04F,; from
the reaction mixture proved to be as difficult as the removal of HSO3F, and
only partly decomposed materials resulted in both instances.

Five pure products with the compositions Nb,Fg(SO;F), NbF,(SOsF),
NbF5(SO3F)., TaF,(SO;F) and TaF;(SOsF), were obtained by distillation in
vacuo without decomposition. All of these are moisture-sensitive, colorless,
viscous liquids. Upon long standing at room temperature, Nb,Fy(SO3F)
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disproportionated to give solid crystalline NbF; and NbF,(SO,;F). TaF(SO,F)
obtained in this manner was different, both in terms of physical properties
and vibrational spectra, from a reported high-melting white solid product,
which was obtained in c¢. 50% yield from a ligand redistribution reaction
between TaF; and Ta(SO;F);(solv.) in HSOF [12].

All materials are believed to be SOg;F-bridged polymers or oligomers
with approximately octahedral coordination around the central atom. This
is apparent from the vibrational spectra, which are very similar to those of
SbyFg(SO3F), SbF(SO3F), SbF;(SO;F), [8] and AsF5(SO5;F), [9] reported
previously. The absence of fine structure in the °F NMR spectrum suggests
fast exchange between terminal and bridging SO;F groups and, probably,
between fluoride ligands as well. The neat products of general formula
MF,,(SO3F);_, (M=Nb, Ta; n=3, 4) exhibited electrical conductivities in
the order of 107°~107* 27! ca~!. The electrical conductivities of the neat
liquid increased with increasing temperatures, which also suggests an ionic
dissociation of SO;F-bridged oligomers and possible ligand exchange via
ionic intermediates.

The resulting products are not necessarily well-defined, stoichiometric
compounds. Similar conclusions were reached some time ago regarding
viscous liquids of compositions BrF,, (SO5F),_,, (n=1) [13] and recently for
IF,, (SO3F); ., (n=1.5) [14]. The compositions apparent from the analytical
data listed in Table 1 are strictly the results of the M/MF; ratio at the outset
of the reactions. The exact stoichiometries were chosen to allow a comparison
of the products to the corresponding antimony(V) and arsenic(V) fluoride
fluorosulfates reported previously [8, 9].

All Nb(V) and Ta(V) fluoride fluorosulfates are miscible with HSO,F in
all proportions, while the corresponding solid pentafluorides show only limited
solubilities. Their use in superacid systems over a wide concentration range
is possible. Details of the vibrational and '°F NMR spectra, the electrical
conductivities of the neat liquids or their mixtures with HSO,F and their
use in superacid systems will be reported shortly [15].
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